Visualization of subsurface blood vessels by color Doppler optical coherence tomography in rats: before and after hemostatic therapy.

نویسندگان

  • Richard C K Wong
  • Siavash Yazdanfar
  • Joseph A Izatt
  • Manish D Kulkarni
  • Jennifer K Barton
  • Ashley J Welch
  • Joseph Willis
  • Michael V Sivak
چکیده

BACKGROUND The ability to visualize subsurface blood vessels and measure flow may be useful in certain experimental and clinical settings. METHODS Color Doppler optical coherence tomography was used to visualize and measure blood flow in subsurface vessels in vivo in a rat skin flap model. Local "hemostatic" interventions (epinephrine or sclerosant injection, heat probe, and laser) were then applied and imaging was repeated. The skin flap was evaluated histologically. RESULTS Subsurface blood vessels were easily visualized in cross-section, and vessel diameter and bidirectional blood flow velocity were readily measured. Color Doppler optical coherence tomography demonstrated that flow was significantly reduced after epinephrine injection and became undetectable after the other interventions. This correlated with pathologic evidence of vessel damage in all interventions, except for epinephrine injection. Although vessel response was as predicted to most interventions, the response to epinephrine was only temporary, and limited application of heat alone from the heat probe halted flow without visually apparent surface injury. CONCLUSIONS Color Doppler optical coherence tomography provides high-resolution, cross-sectional flow imaging in subsurface blood vessels. Color Doppler optical coherence tomography is potentially a better technique for the study of existing and new hemostatic intervention in the laboratory. Potential future clinical applications include monitoring of the response to hemostatic modalities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental Visualization of Labyrinthine Structure with Optical Coherence Tomography

Introduction:Visualization of inner ear structures is a valuable strategy for researchers and clinicians working on hearing pathologies. Optical coherence tomography (OCT) is a high-resolution imaging technology which may be used for the visualization of tissues. In this experimental study we aimed to evaluate inner ear anatomy in well-prepared human labyrinthine bones.Materials and Methods:Thr...

متن کامل

I-45: Color Doppler Sonography of Endometrium in Infertility Patients

Background Endometrial receptivity is one of parameters which determine the reproductive outcome in in vitro fertilization programs. A good blood supply towards the endometrium is usually considered to be an essential requirement for implantation. Blood vessels of the endometrium can be detected by transvaginal color and pulse Doppler sonography. Color Doppler assessment permits better visualiz...

متن کامل

Volumetric and quantitative imaging of retinal blood flow in rats with optical microangiography

In this paper, we present methods for 3D visualization and quantitative measurements of retinal blood flow in rats by the use of optical microangiography imaging technique (OMAG). We use ultrahigh sensitive OMAG to provide high-quality 3D RBF perfusion maps in the rat eye, from which the Doppler angle, as well as the diameters of blood vessels, are evaluated. Estimation of flow velocity (i.e. a...

متن کامل

Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging

In this paper, we analyze the retinal and choroidal blood vasculature in the posterior segment of the human eye with optimized color Doppler and Doppler variance optical coherence tomography. Depth-resolved structure, color Doppler and Doppler variance images are compared. Blood vessels down to the capillary level were detected and visualized with the optimized optical coherence color Doppler a...

متن کامل

Imaging pulsatile retinal blood flow in human eye.

A functional Fourier domain optical coherence tomography instrument offering spectral Doppler imaging of in vivo pulsatile human retinal blood flow was constructed. An improved phase-resolved algorithm was developed to correct bulk motion artifacts. Spectral Doppler imaging provides complementary temporal flow information to the spatially distributed flow information of the color Doppler image ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Gastrointestinal endoscopy

دوره 55 1  شماره 

صفحات  -

تاریخ انتشار 2002